OptFEM3DP1 Toolbox  V1.0
Matlab/Octave Optimized P1-Lagrange Finite Element Method in 3D
 All Files Functions Variables Pages
MassAssembling3DP1base.m File Reference

Assembly of the Mass Matrix by $P_1$-Lagrange finite elements in 3D. More...

Go to the source code of this file.

Functions

function MMassAssembling3DP1base (nq, nme, me, volumes)
 Assembly of the Mass Matrix by $P_1$-Lagrange finite elements in 3D.
 

Detailed Description

Assembly of the Mass Matrix by $P_1$-Lagrange finite elements in 3D.

  • Basic version (see report).

Definition in file MassAssembling3DP1base.m.

Function Documentation

function M = MassAssembling3DP1base (   nq,
  nme,
  me,
  volumes 
)

Assembly of the Mass Matrix by $P_1$-Lagrange finite elements in 3D.

  • Basic version (see report).

The Mass Matrix $\Masse$ is given by

\[\Masse_{i,j}=\int_\DOMH \FoncBase_i(\q)\, \FoncBase_j(\q)\, d\q,\ \forall (i,j)\in{\ENS{1}{\nq}}^2\]

where $\FoncBase_i$ are $P_1$-Lagrange basis functions.

Example
    Th=CubeMesh(10);
    M=MassAssembling3DP1base(Th.nq,Th.nme,Th.me,Th.volumes);
See Also
ElemMassMat3DP1D0
Copyright
See License issues
Parameters
nqtotal number of vertices, also denoted by $\nq$.
nmetotal number of elements, also denoted by $\nme$.
meConnectivity array, $4\times\nme$ array.
$\me(\jl,k)$ is the storage index of the $\jl$-th vertex of the $k$-th tetrahedron in the array $\q$ of vertices coordinates, $\jl\in\{1,2,3,4\}$ and $k\in{\ENS{1}{\nme}}$.
volumesArray of volumes, $1\times\nme array$. volumes(k) is the volume of the k-th tetrahedron.
Return values
MGlobal mass matrix, $\nq\times\nq$ sparse matrix.

Definition at line 17 of file MassAssembling3DP1base.m.