Giada Grossi

Chargée de Recherche en mathématiques au CNRS

E-mail: grossi[AT]math[dot]univ-paris13[dot]fr

LAGA
Université Sorbonne Paris Nord (Paris 13)
99, avenue Jean-Baptiste Clément
93430 - Villetaneuse

Picture courtesy of L. Modena

I am Chargée de Recherche with the CNRS at LAGA since October 2022. I visited the MSRI for the special programme Algebraic Cycles, L-Values, and Euler Systems from January till May 2023. Previosuly, I was an FSMP postdoc at LAGA with Jacques Tilouine and before that, I was a Ph.D. student at the London School of Geometry and Number Theory working under the supervision of Sarah Zerbes.

I am an organiser of the London-Paris Number Theory seminar.


Research

My research area is Number Theory and Arithmetic Geometry and, more precisely, I am interested in Iwasawa theory, Euler systems, special values of L-functions, automorphic forms and cohomology of Shimura varieties.


Papers & Preprints

[8.] Asai-Flach classes, p-adic L-functions and the Bloch-Kato conjecture for GO(4), with D. Loeffler and S. Zerbes.
Preprint, 2024.
[7.] Non-vanishing of Kolyvagin systems and Iwasawa theory, with A. Burungale, F. Castella, and C. Skinner.
Preprint, 2023, Oberwolfach report.
[6.] P-adic Asai L-functions for quadratic Hilbert eigenforms, with D. Loeffler and S. Zerbes.
Preprint, 2023.
[5.] Mazur's main conjecture at Eisenstein primes, with F. Castella and C. Skinner.
Preprint, 2023.
[4.] Higher Hida theory for Hilbert modular varieties in the totally split case
Preprint, 2021.
[3.] On the anticyclotomic Iwasawa theory of rational elliptic curves at Eisenstein primes, with F. Castella, J. Lee and C. Skinner.
Invent. Math., 227, 517–580 (2022).
[2.] Finite descent obstruction for Hilbert modular varieties, with G. Baldi
arXiv, 2019, Canadian Mathematical Bulletin, Volume 64 , Issue 2 , June 2021 , pp. 452 - 473.
[1.] On norm relations for Asai-Flach classes
arXiv, 2018, Int. J. Number Theory 16, No. 10, 2311-2377 (2020).

Other

London Paris Number Theory seminar
Seminar of Arithmetic and Algebraic Geometry at Paris 13.
Réseau thématique Théorie des Nombres du CNRS, lien pour demandes de financement.
Euler systems and their applications, Ph.D. thesis (2020, UCL).
Heegner points and a p-adic Gross-Zagier formula, Master thesis