1. S. Pigola, G. Veronelli, The smooth Riemannian extension problem To appear in Ann. Sc. Norm. Super. Pisa Cl. Sci.
  2. G. Veronelli, Scalar curvature via local extent Analysis and Geometry of Metric Spaces 6 (2018) 146–164
  3. G. Veronelli, Boundary structure of convex sets in the hyperbolic space To appear in Monatshefte für Mathematik DOI: 10.1007/s00605-018-1194-7
  4. S. Pigola, G. Veronelli, Sobolev spaces of maps and the Dirichlet problem for harmonic maps. To appear in Communications in Contemporary Mathematics
  5. A. Naber, D. Valtorta, G. Veronelli, Quantitative regularity for p-harmonic maps. Scheduled to appear in Comm. Anal. Geom. Vol. 27, No 2, 2019
  6. F. Fillastre, I. Izmestiev, G. Veronelli, Hyperbolization of cusps with convex boundary, Manuscripta Math. 150 (2016) no. 3-4, 475–492
  7. S. Pigola, G. Veronelli, On the Dirichlet problem for p-harmonic maps II: targets with special structure, Proc. Amer. Math. Soc. 144 (2016), no. 7, 3173–3180 (here an old expanded version)
  8. F. Fillastre, G. Veronelli, Lorentzian area measures and the Christoffel problem, Ann. Sc. Norm. Super. Pisa Cl. Sci. 16 (2) 383–467, 2016.
  9. S. Pigola, G. Veronelli, On the Dirichlet problem for p-harmonic maps I: compact targets, Geom. Dedicata 177 (2015), 307–322 (here an old expanded version)
  10. E. Hebey, G. Veronelli, The Lichnerowicz equation in the closed case of the Einstein-Maxwell Theory, Transactions of the Amer. Math. Soc. 366, Number 3, March 2014, Pages 1179–1193.
  11. M. Rimoldi, G. Veronelli,  Topology of steady and expanding gradient Ricci solitons via  f-harmonic maps. Differential Geom. Appl. 31 (2013), no. 5, 623–638.
  12. S. Pigola, G. Veronelli, Remarks on $L^{p}$-vanishing results in geometric analysis, International Journal of Mathematics 23 no. 1 (2012) 1250008, preliminary version on arXiv:1011.5413v1
  13. G. Veronelli, A global comparison theorem for p-harmonic maps in homotopy class, Journal of Mathematical Analysis and Applications, 391 (2012) 335-349, doi:10.1016/j.jmaa.2011.03.037, preliminary version on arXiv:1011.3703v1
  14. D. Valtorta, G. Veronelli, Stokes' theorem, volume growth and parabolicity, Tohoku Mathematical Journal, 63 no. 3 (2011), p. 397-412
  15. P. Mastrolia, M. Rimoldi, G. Veronelli, Myers' type theorems and some related oscillation results, Journal of Geometric Analysis, 22  no. 3 (2012) 763-779. doi: 10.1007/s12220-011-9213-0, preliminary version on arXiv:1002.2076v1
  16. S. Pigola, G. Veronelli, Lower volume estimates and Sobolev inequalitiesProc. Amer. Math. Soc. 138 (2010), p. 4479-4486, doi: 10.1090/S0002-9939-2010-10514-2
  17. G. Veronelli, Uniform decay estimates for solutions of the Yamabe equation, Geometriae Dedicata 155 no. 1 (2011) 1-20, doi:10.1016/j.difgeo.2011.01.002
  18. I. Holopainen, S. Pigola, G. Veronelli, Global comparison principles for the p-Laplace operator on Riemannian manifolds, Potential Analysis 34 no. 4 (2011), p. 371-384, doi: 10.1007/s11118-010-9199-4
  19. G. Veronelli, On p-harmonic maps and convex functions, Manuscripta Math. 131 (2010), no. 3-4, p. 537-546, ISSN: 0025-2611, doi: 10.1007/s00229-010-0335-7
  20. S. Pigola, G. Veronelli, Uniform decay estimates for finite-energy solutions of semi-linear elliptic inequalities and geometric applications, Differential Geometry and Its Applications Journal, 29 (2011), p. 35–54, doi: 10.1016/j.difgeo.2011.01.002
  21. S. Pigola, G. Veronelli, On the homotopy class of maps with finite p-energy into non-positively curved manifolds, Geometriae Dedicata 143 (2009), Issue 1, p. 109-116, ISSN: 0046-5755, doi: 10.1007/s10711-009-9376-z


Some slides:

I. Holopainen, S. Pigola, G. Veronelli, Global comparison principles for the p-Laplace operator on Riemannian manifolds, Reports in Mathematics, University of Helsinki. Preprint 504 (2009), submitte