1. A. Naber, D. Valtorta, G. Veronelli, Quantitative regularity for p-harmonic maps. To appear on Comm. Anal. Geom.
  2. F. Fillastre, I. Izmestiev, G. Veronelli, Hyperbolization of cusps with convex boundary, Manuscripta Math. 150 (2016) no. 3-4, 475–492
  3. S. Pigola, G. Veronelli, On the Dirichlet problem for p-harmonic maps II: targets with special structure, Proc. Amer. Math. Soc. 144 (2016), no. 7, 3173–3180 (here an old expanded version)
  4. F. Fillastre, G. Veronelli, Lorentzian area measures and the Christoffel problem, Ann. Sc. Norm. Super. Pisa Cl. Sci. 16 (2) 383–467, 2016.
  5. S. Pigola, G. Veronelli, On the Dirichlet problem for p-harmonic maps I: compact targets, Geom. Dedicata 177 (2015), 307–322 (here an old expanded version)
  6. E. Hebey, G. Veronelli, The Lichnerowicz equation in the closed case of the Einstein-Maxwell Theory, Transactions of the Amer. Math. Soc. 366, Number 3, March 2014, Pages 1179–1193.
  7. M. Rimoldi, G. Veronelli,  Topology of steady and expanding gradient Ricci solitons via  f-harmonic maps. Differential Geom. Appl. 31 (2013), no. 5, 623–638.
  8. S. Pigola, G. Veronelli, Remarks on $L^{p}$-vanishing results in geometric analysis, International Journal of Mathematics 23 no. 1 (2012) 1250008, preliminary version on arXiv:1011.5413v1
  9. G. Veronelli, A global comparison theorem for p-harmonic maps in homotopy class, Journal of Mathematical Analysis and Applications, 391 (2012) 335-349, doi:10.1016/j.jmaa.2011.03.037, preliminary version on arXiv:1011.3703v1
  10. D. Valtorta, G. Veronelli, Stokes' theorem, volume growth and parabolicity, Tohoku Mathematical Journal, 63 no. 3 (2011), p. 397-412
  11. P. Mastrolia, M. Rimoldi, G. Veronelli, Myers' type theorems and some related oscillation results, Journal of Geometric Analysis, 22  no. 3 (2012) 763-779. doi: 10.1007/s12220-011-9213-0, preliminary version on arXiv:1002.2076v1
  12. S. Pigola, G. Veronelli, Lower volume estimates and Sobolev inequalitiesProc. Amer. Math. Soc. 138 (2010), p. 4479-4486, doi: 10.1090/S0002-9939-2010-10514-2
  13. G. Veronelli, Uniform decay estimates for solutions of the Yamabe equation, Geometriae Dedicata 155 no. 1 (2011) 1-20, doi:10.1016/j.difgeo.2011.01.002
  14. I. Holopainen, S. Pigola, G. Veronelli, Global comparison principles for the p-Laplace operator on Riemannian manifolds, Potential Analysis 34 no. 4 (2011), p. 371-384, doi: 10.1007/s11118-010-9199-4
  15. G. Veronelli, On p-harmonic maps and convex functions, Manuscripta Math. 131 (2010), no. 3-4, p. 537-546, ISSN: 0025-2611, doi: 10.1007/s00229-010-0335-7
  16. S. Pigola, G. Veronelli, Uniform decay estimates for finite-energy solutions of semi-linear elliptic inequalities and geometric applications, Differential Geometry and Its Applications Journal, 29 (2011), p. 35–54, doi: 10.1016/j.difgeo.2011.01.002
  17. S. Pigola, G. Veronelli, On the homotopy class of maps with finite p-energy into non-positively curved manifolds, Geometriae Dedicata 143 (2009), Issue 1, p. 109-116, ISSN: 0046-5755, doi: 10.1007/s10711-009-9376-z


Some slides:

I. Holopainen, S. Pigola, G. Veronelli, Global comparison principles for the p-Laplace operator on Riemannian manifolds, Reports in Mathematics, University of Helsinki. Preprint 504 (2009), submitte