OptFEM2DP1 Toolbox  V1.2b3
Matlab/Octave Optimized P1-Lagrange Finite Element Method in 2D
 All Files Functions Pages
ElemStiffElasMatP1Ba.m File Reference

Computation of the element stiffness elasticity matrix for $P_1$-Lagrange method. The method for numbering the degrees of freedom is local alternate numbering (classical method) More...

Go to the source code of this file.

Functions

function Elem = ElemStiffElasMatP1Ba (q1, q2, q3, area, lambda, mu)
 Computation of the element stiffness elasticity matrix for $P_1$-Lagrange method. The method for numbering the degrees of freedom is local alternate numbering (classical method)
 

Detailed Description

Computation of the element stiffness elasticity matrix for $P_1$-Lagrange method. The method for numbering the degrees of freedom is local alternate numbering (classical method)

Definition in file ElemStiffElasMatP1Ba.m.

Function Documentation

function Elem = ElemStiffElasMatP1Ba (   q1,
  q2,
  q3,
  area,
  lambda,
  mu 
)

Computation of the element stiffness elasticity matrix for $P_1$-Lagrange method. The method for numbering the degrees of freedom is local alternate numbering (classical method)

Hooke's matrix
C=[L + 2*M L 0] [ L L + 2*M 0] [ 0 0 M]
Numbering of local points in reference element is
P=[(0, 0), (1, 0), (0, 1)]

Example:

    q1=[0;0];q2=[1;0];q3=[0;1];
    area=1/2.;
    lambda=1.; mu=1.;
    KElem=ElemStiffElasMatP1Ba(q1,q2,q3,area,lambda,mu);
Parameters
q1array of coordinates of the first point of the triangle
q2array of coordinates of the second point of the triangle
q3array of coordinates of the third point of the triangle
areatriangle area
lambdafirst Lame coefficient in Hooke's law
musecond Lame coefficient in Hooke's law
Return values
Elemelement stiffness elasticity matrix, 6-by-6 matrix

Definition at line 17 of file ElemStiffElasMatP1Ba.m.