![]() |
OptFEM2DP1 Toolbox
V1.2b3
Matlab/Octave Optimized P1-Lagrange Finite Element Method in 2D
|
Computation of the element stiffness elasticity matrix for -Lagrange method. The method for numbering the degrees of freedom is local alternate numbering (classical method)
More...
Go to the source code of this file.
Functions | |
function Elem = | ElemStiffElasMatP1Ba (q1, q2, q3, area, lambda, mu) |
Computation of the element stiffness elasticity matrix for ![]() | |
Computation of the element stiffness elasticity matrix for -Lagrange method. The method for numbering the degrees of freedom is local alternate numbering (classical method)
Definition in file ElemStiffElasMatP1Ba.m.
function Elem = ElemStiffElasMatP1Ba | ( | q1, | |
q2, | |||
q3, | |||
area, | |||
lambda, | |||
mu | |||
) |
Computation of the element stiffness elasticity matrix for -Lagrange method. The method for numbering the degrees of freedom is local alternate numbering (classical method)
Example:
q1=[0;0];q2=[1;0];q3=[0;1]; area=1/2.; lambda=1.; mu=1.; KElem=ElemStiffElasMatP1Ba(q1,q2,q3,area,lambda,mu);
q1 | array of coordinates of the first point of the triangle |
q2 | array of coordinates of the second point of the triangle |
q3 | array of coordinates of the third point of the triangle |
area | triangle area |
lambda | first Lame coefficient in Hooke's law |
mu | second Lame coefficient in Hooke's law |
Elem | element stiffness elasticity matrix, 6-by-6 matrix |
Definition at line 17 of file ElemStiffElasMatP1Ba.m.