3 % Assembly of the Mass Matrix by `P_1`-Lagrange finite elements
4 % - Basic version (see report).
6 % The Mass Matrix `\Masse` is given by
7 % ``\Masse_{i,j}=\int_\DOMH \FoncBase_i(\q)\, \FoncBase_j(\q)\, d\q,\ \forall (i,j)\in{\ENS{1}{\nq}}^2``
8 % where `\FoncBase_i` are `P_1`-Lagrange basis functions.
10 % nq: total number of nodes of the mesh, also denoted by `\nq`,
11 % nme: total number of triangles, also denoted by `\nme`,
12 % me: Connectivity array, `3\times\nme` array. <br/>
13 % `\me(\jl,k)` is the storage index of the
14 % `\jl`-th vertex of the `k`-th triangle in the array `\q`, `\jl\in\{1,2,3\}` and
15 % `k\in{\ENS{1}{\nme}}`.
16 % areas: Array of areas, `1\times\nme` array. areas(k) is the area of the `k`-th triangle.
19 % M: Global mass matrix, `\nq\times\nq` sparse matrix.
38 M(i,j)=M(i,j)+E(il,jl);