OptFEM2DP1 Toolbox  V1.2b3
Matlab/Octave Optimized P1-Lagrange Finite Element Method in 2D
 All Files Functions Pages
MassWAssemblingP1base.m
Go to the documentation of this file.
1 function M=MassWAssemblingP1base(nq,nme,me,areas,Tw)
2 % function M=MassWAssemblingP1base(nq,nme,me,areas,Tw)
3 % Assembly of the Weighted Mass Matrix by `P_1`-Lagrange finite elements
4 % - Basic version (see report).
5 %
6 % The Weighted Mass Matrix `\MasseF{w}` is given by
7 % ``\MasseF{w}_{i,j}=\int_\DOMH w(\q)\FoncBase_i(\q) \FoncBase_j(\q) d\q,\ \forall (i,j)\in{\ENS{1}{\nq}}^2``
8 % where `\FoncBase_i` are `P_1`-Lagrange basis functions.
9 % Parameters:
10 % nq: total number of nodes of the mesh, also denoted by `\nq`,
11 % nme: total number of triangles, also denoted by `\nme`,
12 % me: Connectivity array, `3\times\nme` array.<br/>
13 % `\me(\jl,k)` is the storage index of the
14 % `\jl`-th vertex of the `k`-th triangle in the array `\q`, `\jl\in\{1,2,3\}` and
15 % `k\in{\ENS{1}{\nme}}`.
16 % areas: Array of areas, `1\times\nme` array. areas(k) is the area of the `k`-th triangle.
17 % Tw: Array of vertices weight `w` function values,
18 % `1\times\nq` array.<br/>
19 % `Tw(i)=w(\q^i),` `\forall i\in\ENS{1}{\nq}`.
20 %
21 % Return values:
22 % M: Global weighted mass matrix, `\nq\times\nq` sparse matrix.
23 %
24 % Example:
25 % @verbatim
26 % Th=SquareMesh(10);
27 % w=@(x,y) cos(x+y);
28 % Tw=w(Th.q(1,:),Th.q(2,:));
29 % Mw=MassWAssemblingP1base(Th.nq,Th.nme,Th.me,Th.areas,Tw);
30 % @endverbatim
31 %
32 % See also:
34 % Copyright:
35 % See \ref license
36 M=sparse(nq,nq);
37 for k=1:nme
38  for il=1:3
39  i=me(il,k);
40  Twloc(il)=Tw(i);
41  end
42  E=ElemMassWMatP1(areas(k),Twloc);
43  for il=1:3
44  i=me(il,k);
45  for jl=1:3
46  j=me(jl,k);
47  M(i,j)=M(i,j)+E(il,jl);
48  end
49  end
50 end