OptFEM2DP1 Toolbox  V1.2b3
Matlab/Octave Optimized P1-Lagrange Finite Element Method in 2D
 All Files Functions Pages
StiffAssemblingP1OptV2.m
Go to the documentation of this file.
1 function R=StiffAssemblingP1OptV2(nq,nme,q,me,areas)
2 % function R=StiffAssemblingP1OptV2(nq,nme,q,me,areas)
3 % Assembly of the Stiffness Matrix using `P_1`-Lagrange finite elements
4 % - OptV2 version (see report).
5 %
6 % The Stiffness Matrix `\Stiff` is given by
7 % ``\Stiff_{i,j}=\int_\DOMH \DOT{\GRAD\FoncBase_i(\q)}{\GRAD\FoncBase_j(\q)}d\q,\ \forall (i,j)\in{\ENS{1}{\nq}}^2``
8 % where `\FoncBase_i` are `P_1`-Lagrange basis functions.
9 %
10 % Parameters:
11 % nq: total number of nodes of the mesh, also denoted by `\nq`.
12 % nme: total number of triangles, also denoted by `\nme`.
13 % q: Array of vertices coordinates, `2\times\nq` array. <br/>
14 % `{\q}(\il,j)` is the
15 % `\il`-th coordinate of the `j`-th vertex, `\il\in\{1,2\}` and
16 % `j\in\ENS{1}{\nq}`
17 % me: Connectivity array, `3\times\nme` array.<br/>
18 % `\me(\jl,k)` is the storage index of the
19 % `\jl`-th vertex of the `k`-th triangle in the array `\q` of vertices coordinates, `\jl\in\{1,2,3\}` and
20 % `k\in{\ENS{1}{\nme}}`.
21 % areas: Array of areas, `1\times\nme` array. areas(k) is the area of the `k`-th triangle.
22 %
23 % Return values:
24 % R: Stiffness Matrix, `\nq\times\nq` sparse matrix.
25 %
26 % Example:
27 % @verbatim
28 % Th=SquareMesh(10);
29 % R=StiffAssemblingP1OptV2(Th.nq,Th.nme,Th.me,Th.q,Th.areas);
30 % @endverbatim
31 % Copyright:
32 % See \ref license
33 Ig = me([1 2 3 1 2 3 1 2 3],:);
34 Jg = me([1 1 1 2 2 2 3 3 3],:);
35 
36 q1 =q(:,me(1,:)); q2 =q(:,me(2,:)); q3 =q(:,me(3,:));
37 u = q2-q3; v=q3-q1; w=q1-q2;
38 clear q1 q2 q3
39 areas4=4*areas;
40 Kg=zeros(9,nme);
41 Kg(1,:)=sum(u.*u,1)./areas4; % K1 ou G11
42 Kg(2,:)=sum(v.*u,1)./areas4; % K2 ou G12
43 Kg(3,:)=sum(w.*u,1)./areas4; % K3 ou G13
44 Kg(5,:)=sum(v.*v,1)./areas4; % K5 ou G22
45 Kg(6,:)=sum(w.*v,1)./areas4; % K6 ou G23
46 Kg(9,:)=sum(w.*w,1)./areas4; % K9 ou G33
47 Kg([4, 7, 8],:)=Kg([2, 3, 6],:);
48 R = sparse(Ig,Jg,Kg,nq,nq);