3 % Assembly of the Stiffness Matrix by `P_1`-Lagrange finite elements
4 % - Basic version (see report).
6 % The Stiffness Matrix `\Stiff` is given by
7 % ``\Stiff_{i,j}=\int_\DOMH \DOT{\GRAD\FoncBase_i(\q)}{\GRAD\FoncBase_j(\q)}d\q,\ \forall (i,j)\in{\ENS{1}{\nq}}^2``
8 % where `\FoncBase_i` are `P_1`-Lagrange basis functions.
11 % nq: total number of nodes of the mesh, also denoted by `\nq`.
12 % nme: total number of triangles, also denoted by `\nme`.
13 % q: Array of vertices coordinates, `2\times\nq` array. <br/>
14 % `{\q}(\il,j)` is the
15 % `\il`-th coordinate of the `j`-th vertex, `\il\in\{1,2\}` and
17 % me: Connectivity array, `3\times\nme` array. <br/>
18 % `\me(\jl,k)` is the storage index of the
19 % `\jl`-th vertex of the `k`-th triangle in the array `\q`, `\jl\in\{1,2,3\}` and
20 % `k\in{\ENS{1}{\nme}}`.
21 % areas: Array of areas, `1\times\nme` array. areas(k) is the area of the `k`-th triangle.
24 % R: Global stiffness matrix, `\nq\times\nq` sparse matrix.
43 R(i,j)=R(i,j)+E(il,jl);