3 % Assembly of the Stiffness Elasticity Matrix by `P_1`-Lagrange finite elements
4 % using basic version (see report).
6 % The Stiffness Elasticity Matrix is given by
7 % ``\StiffElas_{m,l}=\int_{\DOMH} \Odv^t(\BasisFuncTwoD_m) \Ocv(\BasisFuncTwoD_l)dT, \ \forall (m,l)\in\ENS{1}{2\,\nq}^2,``
8 % where `\BasisFuncTwoD_m` are `P_1`-Lagrange vector basis functions.
9 % Here `\Ocv=(\Occ_{xx},\Occ_{yy},\Occ_{xy})^t` and `\Odv=(\Odc_{xx},\Odc_{yy},2\Odc_{xy})^t`
10 % are the elastic stress and strain tensors respectively.
13 % nq: total number of nodes in the mesh, also denoted by `\nq`.
14 % nme: total number of triangles, also denoted by `\nme`.
15 % q: Array of vertices coordinates, `2\times\nq` array. <br/>
16 % `{\q}(\il,j)` is the
17 % `\il`-th coordinate of the `j`-th vertex, `\il\in\{1,2\}` and
19 % me: Connectivity array, `3\times\nme` array. <br/>
20 % `\me(\jl,k)` is the storage index of the
21 % `\jl`-th vertex of the `k`-th triangle in the array `\q`, `\jl\in\{1,2,3\}` and
22 % `k\in{\ENS{1}{\nme}}`.
23 % areas: Array of areas, `1\times\nme` array. areas(k) is the area of the `k`-th triangle.
24 % lambda: the first Lame coefficient in Hooke's law
25 % mu: the second Lame coefficient in Hooke's law
27 % - 0 global alternate numbering with local alternate numbering (classical method),
28 % - 1 global block numbering with local alternate numbering,
29 % - 2 global alternate numbering with local block numbering,
30 % - 3 global block numbering with local block numbering.
33 % K: `2\nq\times 2\nq` stiffness elasticity sparse matrix
43 %
#BuildIkFunc, #BuildElemStiffElasMatFunc
50 MatElem=ElemStiffElasMat(q(:,me(1,k)),q(:,me(2,k)),q(:,me(3,k)),areas(k),lambda,mu);
54 K(I(il),I(jl))=K(I(il),I(jl))+MatElem(il,jl);