
- Fundamental coarse space components for Schwarz methods with crosspoints,
F. Cuvelier, M.J. Gander and L. Halpern,
Domain Decomposition Methods in Science and Engineering XXVI, LNCSE, Springer-Verlag,
2021.
- Vectorized algorithms for regular and conforming tessellations of d-orthotopes and their
faces with high-order orthotopes or simplicial elements
F. Cuvelier (December 2019)
- version 1.0.0 [2019/12/30] : first online release
,
,
- Exact integration for products of power of barycentric coordinates over d-simplexes in ℝn
F. Cuvelier (June 2018)
- version 0.0.1 [2018/06/15] : first online release
,
,
- Efficient algorithms to perform linear algebra operations on 3D arrays in vector languages
F. Cuvelier (May 2018)
- version 0.0.2 [2018/05/31] : first online release
,
,
with Matlab, Octave and Python codes.
- Vectorized algorithms for regular tessellations of d-orthotopes and their faces
F. Cuvelier and G. Scarella (2017)
- version 0.1.0 [2017/11/08] : first online release
- version 0.1.1 [2018/01/14] : some spelling and grammar errors corrected
- An efficient way to perform the assembly of finite element matrices in vector
languages
Cuvelier F., Japhet C., and Scarella G.
BIT Numerical Mathematics, September 2016, Volume 56, Issue 3, pp 833–864.
https://doi.org/10.1007/s10543-015-0587-4
- An efficient way to perform the assembly of finite element matrices in Matlab and Octave
Cuvelier F., Japhet C., and Scarella G.(2013)
- Geometrical optics formulaes for Helmholtz equation
Cuvelier F. (2013)
- Probabilistic and deterministic algorithms for space multidimensional irregular porous
media equation
Belaribi, N., Cuvelier, F. and Russo, F.
Stochastic Partial Differential Equations : Analysis and Computations March 2013, Volume 1, Issue 1, pp
3-62.
DOI 10.1007/s40072-013-0001-7
- A probabilistic algorithm approximating solutions of a singular PDE of porous media
type
Belaribi, N., Cuvelier, F. and Russo, F.
Monte Carlo Methods and Applications, Volume 17 (2011), Issue 4, Pages 317-369.
DOI 10.1515/mcma.2011.014
- Thèse :
Etude théorique de l’approximation de Kirchhoff pour l’équation de Maxwell, dans le complémentaire
d’une réunion de convexes. Etude numérique. Cuvelier F., juin 1994