Master II Lecture

Homotopy Theories

(November-December 2024)

Abstract

The goal of this lecture will be to present various "concrete" homotopy theories. We will start with the classical homotopy theory of topological spaces (higher homotopy groups, cofibration and fibrations, cellular complexes, Whitehead and Hurewicz theorems). Then we will move to the homotopy theory of simplicial sets (definitions, simplex category, adjunction and cosimplicial objects, examples, fibrations, Kan complexes, and simplicial homotopy).

This course will directly follow the one of Bernhard Keller "Homologie, cohomologie et faisceaux" (September-October 2024) and it will be pursued further by the course of Grégory Ginot "Homotopie II" (January-February, 2024). It is needed to understand the specialised courses of Benoit Fresse "Operads, graph complexes and applications" (March-April, 2024) and Maria Yakerson " How homotopy theory helps algebraic geometry" (March-April, 2024).

Organisation

The courses will take place

Lecture Notes

The notes of the course are available here:    (version of December 11, 2024)

Layout

  1. Homotopy theory of topological spaces
  2. Simplicial homotopy theory

Worksheet

YouTube links (2020 course)

Course 1 [4 november]: https://youtu.be/tFEjsTGzVfk (1/2) & https://youtu.be/NV_Q8StHP6Y (2/2)
Course 2 [5 november]: https://youtu.be/W_Ze-h04fHo (1/2) & https://youtu.be/zChw5rzs1IY (2/2)
Course 3 [11 november]: https://youtu.be/O3rx2rHJZPM (1/2) & https://youtu.be/jR8yXHouaFk (2/2)
Course 4 [12 november]: https://youtu.be/7s8WEuuPrw0 (1/2) & https://youtu.be/KG3VEW5P09w (2/2)
Course 5 [18 november]: https://youtu.be/zrfybhj5xqk
Course 6 [19 november]: https://youtu.be/O6mTvYjDczY (1/2) & https://youtu.be/YWSsAR30IaY (2/2)
Course 7 [25 november]: https://youtu.be/5jTArhCNn4E
Course 8 [26 november]: https://youtu.be/tAdSwbQbqI8 (1/2) & https://youtu.be/ZMvw8b0SY78 (2/2)
Course 9 [2 december]: https://youtu.be/Z6l6vp-r8tk
Course 10 [3 december]: https://youtu.be/JjcYRKKT85Y
Course 11 [9 décember]: https://youtu.be/zFleVAuHq3E
Course 12 [10 december]: https://youtu.be/xz-nJ7NF59o (1/2) & https://youtu.be/T57GHF0Yy2M  (2/2)
Course 13 [16 december]: https://youtu.be/66mFKD_vfa8

Exam (2024)

Exam (2021)

Exam (2020)

Exam (2018)

Beyond the lectures

References

Prerequisistes

From Bernhard Keller's course: category, functor, adjunction, (co)limits, topological space, homeomorphism.

Follow-up

Seminars

Professor

       Bruno Vallette (lectures/exercise sessions)



Back to main page

Last updates : January 9, 2025.