Séminaire de l’équipe PM-EDP
Responsables : P. MILLET, C. VALCU
Mardi 28 octobre 2025
14:00 Shrish Parmeshwar (University of Bath)
Résumé
An Expanding Self-Similar Vortex Configuration for the 2D Euler Equations
Salle B405, bâtiment B, LAGA, Institut Galilée, Université Paris 13A long-standing topic of interest is to understand the
desingularization problem in vortex dynamics for the incompressible 2D
Euler equations: solutions of the system that approximate point vortices
in the sense that the vorticity of the solution stays highly
concentrated around a finite number of points on some interval of time.
We exhibit solutions of 2D Euler that desingularize a self-similarly
expanding configuration of 3 point vortices, with each point moving
along a spiral.
Mardi 4 novembre 2025
14:00 Christiane Klein (University of York)
Résumé
An auxiliary field method for showing Green hyperbolicity and its application to Proca theories
Salle B405, bâtiment B, LAGA, Institut Galilée, Université Paris 13à venir
Mardi 18 novembre 2025
14:00 Anne-Sophie de Suzzoni (Université Evry Paris-Saclay.)
Résumé
Titre bientôt disponible
Salle B405, bâtiment B, LAGA, Institut Galilée, Université Paris 13à venir
Mardi 25 novembre 2025
14:00 François Genoud (EPFL)
Résumé
Finite time blow-up for the critical nonlinear Schrödinger equation on a star graph
Salle B405, bâtiment B, LAGA, Institut Galilée, Université Paris 13The talk will start with a brief history of finite time blow-up solutions for critical
nonlinear Schrödinger equations (NLS) in various contexts. Once the stage is set, the
construction of a finite time blow-up solution for the critical NLS on a star graph with
delta coupling will be presented. The simplest configuration of a graph with two branches
corresponds to the NLS on the line with a "delta potential" at the origin. The general case
involves a one-dimensional Laplace operator on the graph with a Robin-type boundary condition
at the vertex. The blow-up analysis relies on the resolution of the nonlinear Cauchy problem
within the domain of the corresponding linear operator.
This is joint work with Stefan Le Coz and Julien Royer.
Mardi 2 décembre 2025
14:00 Charlotte Dietze (Sorbonne Université - LJLL)
Résumé
Titre bientôt disponible
Salle B405, bâtiment B, LAGA, Institut Galilée, Université Paris 13à venir